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Self-trapping versus trapping: Application to hole transport in DNA
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We address the problem of interplay between self-trapping effects and effects of an external potential, which
may be relevant for many physical systems, such as polarons in solids or a Bose-Einstein condensate with
attraction. If the potential consists of two different wells, the system initially localized in the shallower well
may relax into the deeper well, or may not if stabilized by the self-trapping effect. We show how this picture
can be applied to interpret results of recent experiments on electron transfer in the DNA migBieséet al.,
Nature412 318 (2001)]. The results of our calculations agree well with the experimental findings, giving
evidence that hole transport in DNA involves polaronic effects.
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I. INTRODUCTION found that when two traps are connected by a long bridge
sequence of’s, after a hole tunnels through the firsA3s it
The phenomenon of self trappid®T) is well known in  moves through many lated’s with essentially no further
many fields of physics. It is often mentioned when one dealsttenuatior{6]. Several mechanisms have been proposed for
with charge carriers or excitons in solids, which interact withhole transport through the bridge: incoherent hopginy
the crystal lattice. Bose-Einstein condens@&C) with at-  fluctuation-induced hoppinfg], and bandlike transpof®].
traction between constituting particles may also be considin the present paper, we show how the experimental results

ered a system with ST. of Ref.[6] can be interpreted in the polaron model of Ref.
One of the aspects of this phenomenon is the interplay4].
between the effect of interactions responsible for ST, and the This brings us into the general framework discussed in the
effect of an external potential applied to the systeonfine-  beginning: if the polaron picture is relevant for DNA, hole
ment, external field, or impurity potentjalOne example of transfer is a result of the competition between the effect of
this is polaron formation in the presence of an impurity. De-the trapping potential of guanines and the self-trapping effect
pending on the dimensionality of the system, its parametergjue to the interaction with lattice. The former provides the
and the type of the impurity, the electronic state may shrinkdriving force for the hole transfer from a singBtrap to the
into a small polaron, or form a finite-radius polard. An-  deeperGGG trap, while the latter tends to keep the carrier
other example is BEC with attraction in a magnetic trap,where it is, i.e. on the singl&. In this context one may ask
where the confining potential may prevent the cloud fromseveral questions. When will the hole relax from a shallower
collapsing[2]. trap (G) to a deeper trapGG or GGG), and when will the
A specific motivation for studying this problem is experi- shallower-trap state be stabilized by ST? What is the charac-
ments on charge transport along a DNA molecule. Each oferistic energy of this stabilization?
the two DNA strands may be viewed as a chain, each site of The same questions may be relevant for a completely dif-
which is one of the four bases: guanin@)( adenine A),  ferent physical system, such as BEC in a double-well trap-
cytosine C), and thymine T), having different ionization ping potential. This system was studied in the context of
potentials. Thus, if one removes an electron from the chainphase coherence effects between the two condengilgs
the resulting hole feels the on-site potentigls<V,<Vc  but we are not aware of any work analyzing the stability of
<V+. The overlap of electronier orbitals of the neighbor- stationary states in different wells in the presence of an en-
ing bases tends to delocalize the carrier along the di3adh ergy relaxation mechanism.
The dependence of this overlap on the interbase distance The arguments we give below are of quite general char-
couples the hole motion to the lattice displacements, whiclacter, as long as systems whose stationary states are de-
in one-dimensional systems leads to the carrief®TThus, scribed by the stationary nonlinear Sdtfirmger equation
one may hope to describe a charge on the DNA chain analawith external potential, or a similar one, are considered. Im-
gously to polarons in conducting polymd#. portant is that we will always remain at the level of classical
There is a large body of work in which transport of holesfield equations, neglecting the quantum nature of the crystal
in DNA has been studied by monitoring their progress be{attice vibrations(which is justified if the phonon frequency
tween different traps on the chaif [6] and references is smal) or quantum corrections to the Gross-Pitaevski equa-
therein. A single guanine on a chain consisting only of ad-tion for the condensate wave function.
enines acts as a trap singg<V,; two adjacent guanines Focusing on stationary states, we do not address kinetic
represent then a different trap with a deeper level, etc. It waproblems, like dc conductivity in DNA. Kinetics is strongly
dependent on fluctuations and dissipation present in the sys-
tem. For polymers and especially for DNA these processes
*Electronic address: basko@chem.rochester.edu are complex and different for different experimental condi-
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tions. One of the goals of the present paper is to get somfor the lattice degrees of freedom, one can eliminate the lat-

insight into the behavior of the system regardless of the spaer. Namely, from Eq(2) we obtain that in a stationary state

cific nature of fluctuations and dissipation. the displacement(x) can be expressed in terms of the hole
wave function as

Il. GENERAL PICTURE

Ju
The phenomenon of self-trapping may occur when a X Y(x)|2. (4)
charge carriefan excess electron in the conduction band or a

hole in the valence bandnteracts with a deformable me- Thg total energy of the stationary state can be formally ob-

dium (crystal latticg. The charge polarizes the medium (5ineq from the Lagrangiaf8) and can be expressed in terms
whose deformation, in turn, results in an effective potential W(X)

acting on the charge, the total energy of the system being

lower than for a freddelocalized state; the carrier “digs” a

well for itself. The interaction can often be formally de- E[¢]=f
scribed by an effective potential(r) acting on the carrier.

This potential is produced by the deformable medium and ity ore the last term represents the additional energy of the

depends on the mediuffattice) degrees of freedom. system due to the interaction of the carrier with the medium.

For simplicity we assume to be in one dimension. Con'Minimizing E[ ] with respect tay(x) one obtains the equa-

sidering states with only one carrier, we describe the carriefion for the wave function of the stationary polaron
by the wave functiony(x,t). Assuming the lattice to be '

h h dina d  freed lnssi The energy functional5) coincides also with that for
eavy, we treat the corresponding degrees of freedom Classkec \yith attraction. Choosing the appropriate units for the
cally. This leads to the Schdinger equation for the particle

) energy, we write it in a generic form
wave function

2 2 = (9_"0
iﬁa—w: i (9—+V(x)+v(x,t) . (1) Ew’]_”(ﬁx

7| 2m

h2 (a2
%(5 +V(X) 2= Y2yt dx, (5

2 g
+V(x) ¢~ 5#’/4

dx, (6)

] ) ) ) where all the quantities are dimensionless grid the non-
Here,m is the carrier(effective mass,V(x) is an external  |inear coupling constant. For BEC, one usually normalizes

potential acting on the carri¢e.g., due to traps, impurities, the wave function to the total number of particles, here we
external electric field, etfs.andv (x,t) is the effective poten-  prefer to keep the normalization to unity

tial due to the lattice. To determine the dynamics of the

coupled system, in addition to E@l) one should supply the

equations of motion for the lattice degrees of freedom, which f P (x)dx=1, (7)
determine the behavior of the potentia{x,t). The argu-

ments we give below are quite general, but in order to makgg|eyant for polarons. Changing the normalizatioryo€or-
the algebra as simple and illustrative as possible we Cons'd‘?ésponds to simple rescaling gf

equations for acoustic phonons with the sound velazjtil] Suppose that the potentis(x) consists of two different
" " potential wells, and for each well there is a stationary state
Lou_ou + yi| E (2)  With the wave function localized around the well. The deeper
c? gt ox? X ' of these two states represents the ground state of the system,

the shallower one is an excited state. It is convenient to in-
whereu(x,t) is the field of the lattice displacementgjs the  terpret this picture geometrically, viewing each wave func-
electron-phonon coupling constant, and the lattice potentiaion y(x) as a point in the functional space. Then the ground
is related to the displacements byx)=ydu/dx (deforma-  state of the system is the global minimum of the functional
tion potential. The Lagrangian corresponding to these equag[ ] in this space, while the excited state may be either a
tions is given by local minimum or an unstable stationary point. If the dynam-
ics of the system is governed only by the equations of motion
L= J considered above, the system can remain in the excited state
1 ( &u)2
2\ dx d

in .. u?
_ * o1k _ * 0 * o4
y W= d W=V h= vy X +2c2 forever. However, if one includes fluctuations and dissipa-
Consider stationary solutions of Eq4) and(2)

tion, the character of the excited state becomes very impor-
tant. For a local minimum small perturbations will not drive
X. (3)  the system out of the vicinity of the stationary poine., the
particle stays in the shallow wegllwhile in the case of an
unstable point dissipation may make the system fall into the
global minimum(i.e., the particle moves to the deep well
P(x,t) = g(x)e ML y(x,t)=u(x), Thus, the first question we ask ourselves is whether a
stationary pointio(x) of the functional(6) is stable or not.
wheree is the electronic energy anf(x) may be considered The wave function satisfies the stationary nonlinear Schro
real without loss of generality. Using the equation of motiondinger equation
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1 6E 52 satisfies Eq(10) with zero eigenvalueSe=0 (an analog of
250 =l-— +V =gyl | o= eotho- (8) neutrallequilibrium in mechanigsThis solutipn corresponds
IX to spatial translation of the polardd4], which apparently

o , costs no energy.
The Lagrange multipliek, takes care of the constraifit)

and corresponds to the electronic energy for polarons and the

single-particle energychemical potentialfor BEC. Around Ill. APPLICATION TO DNA

the stationary point the energy functiond) may be ex- Now we apply the above considerations to a polymer
panded to the second order as chain with one excess holgor DNA we assume that the
hole is confined to one strandThe electronic wave func-

1 E tions on adjacent bases overlap, which leads to nonzero val-
2 S(X) S(x") Y ues of the hole transfer integrals. ; , between the sitea -
+1 andn (the off-diagonal elements of the hole Hamil-
X S(X) Sp(x")dx dx, (9)  tonian. This overlap is affected by various motions of the
bases. The vibrational degrees of freedom that couple effi-
where the derivative is taken at the poisg, and the varia-  ciently to the transfer integral are the relative base pair dis-
tion ¢y is orthogonal toy, (see the Appendix for detajls  placements along the stack . ;— u,, (lattice strain and the
When dealing with the quadratic for(®) 6y can be treated relative twist angled,,.;— 6, [15]. However, the base dis-
as a vector in the linear space orthogonal/tp If for some  placementsi, and the twist angleg, are not independent of
direction|6y)L | o) the quadratic form is negative, the sta- each other, since rigidity of the sugar-phosphate backbone
tionary point is unstabl¢12]. The vector minimizing the imposes a constraint that relates thgt6]. Hence, we con-
quadratic form(the “worst” fluctuation) must be an eigen- sider only the dependendg. 1 ,(Un+1—U,) which has the

ELy1~Eluol+ |

vector of the corresponding matrix sense of an effective coupling. Assuming that the displace-
ments are small, we approximate this dependence by a linear
H|S54) = Se| i)+ N o), (10 one,
where™ is the linear operator whose kernel is given by the tns1n(Uns1—Up) =to— a(Upy1—Up), (14

square bracket in Eq9)
wheret, is the transfer integral for zero displacements and
Hy=[—VZ+V(x)—3g45(X) — €], (1) s the effective coupling constant. The calculation is simpli-
fied by assuming, and « to be the same for all neighboring
Se is the corresponding eigenvalue, axdyo) is an arbitrary  pases. The assumptions made above lead us to the Su-

vector parallel td ), which is cancelled when Eq10) is  Schrieffer-HeegefSSH Hamiltonian[17] for an undimer-
projected on the subspace orthogonalitg). From Eq.(10) ized chain

the condition for the eigenvalue% follows:

H— €)Y o) =0. 12 H=2 Votri thn— 2 [to— a(Uns 1= Un) 1(4 o1
(ol (H— 5€) 2| yo) (12 > >

If the smallest eigenvaluée,,;,<0, then the stationary point pﬁ K

is unstable. The corresponding eigenvector determines the +¢;§+1¢n)+§n‘, erE(unH—un)2 , (15

direction of the “worst” fluctuation

SN =(H— e )1 _ 13 vv_here Un is. the hole wave functiqnv_n is. the on-sit_e trap-
|84)=( €min) | Y0) (13 ping potential(determined by the ionization potential of the
Applied to the case of the two traps, this criterion meand'th base, p, is the momentum conjugate to the displacement
that the state in the shallower well may be stabilized, if then, @ndM andK are the mass and the elastic constant asso-
ST potential— 3917,,3 manages to “deepen” the shallow well ciated with the vibrations considered. Application of this
sufficiently. Note that conceptually the same picture de-Hamiltonian to DNA was discussed in detail in Rp4.
scribes the stabilization of a finite-radius polaron in a three-. 1S Hamiltonian yields the following equations of mo-
dimensional(3D) solid by an impurity potential1], which tion for the holg wave function/,(t) and the lattice dis-
prevents it from shrinking into a small polaron, or the stabi-Place€mentsiy(t):
lization of BEC with attraction by the trap potentig2], .
which would collapse in free space. In the latter case, the i hn=Vnihn—[to—a(Uns1—Un) [hni1
excitation 5 with the energyde,i, approaching zero at the Tte— a(U.—u 16
onset of the collapse, is the breathing m¢#i8]. Note also [to~ a(Un=Un-1)1¥n-1, (16
that for the translationally invariant cad4§x)=0 one can

differentiate Eq(8) with respect tox to see that the function MUp=K(Un+1=2Un+Un—1)

+a[_‘/’:+l¢’n+¢: n-_1tc.Cl, (17)

where “c. c.” stands for the complex conjugate.

2
Sy =L g
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Considering stationary solutions always “cost” some energy- A, thus we do not expect it to
‘ cause instability. Still, in the stable situation, the highest
Ya()= e Dy () =u,, point of this trajectory may be the lowest saddle point. An-
other possible pathway is to tunnel to the second trap
we eliminate the strain using E(L7), through the exponential tail of the wave function, when first
a small “fraction” of the hole appears in the second trap,
2a then it grows with time until all of the wave function leaks
Un+l_“n:?¢n+l¢n’ (18 into the second trap, the value of the wave function on the
bridge being always small.
which is an analog of Eq4). Substitutingu,, into the Hamil-  The values of microscopic parameters for charge carriers
tonian (15), instead of the functionalé) we obtain the en- N DNA have not been agreed upon by the community yet.
ergy functional for DNA We use the valuesty~0.2 eV, a~0.4 eV/A, and K

~0.85 eV/&, which allowed us to reproduce the experi-
g mental results of Ref.18] for the differences in energies of
E[¢n]=2+ 2, | Vath2— 20t 1—= 4202, ,|. (19  the hole stationary states in different trt§]. These values
n 2 correspond to a coupling constanin Eq. (19) of about four.
Forg=4, the energy of the static self-localized polaron state
Here, energy is measured in units of the transfer inteigtal on a chain without trapgor on a very long bridgeis e=
while the dimensionless coupling constanis expressed in - —0.60 (purely electronic energy E=—0.23 (total energy,
terms of the electron-lattice coupling constanéind the lat- measured in units df. The length determining the exponen-
tice elastic constar asg=4a?/(Kty). The constant two is tial tail of the wave function is of the order of the lattice
added to choose the zero energy to be the extremum of thenstant(the polaron wave function extends over a few lat-
free valence band in an undistorted chain with=0, be- tice siteg, so discreteness of the model is essential for this
cause we are dealing with holes. value ofg. The largest lattice straim,, . 1 — U, is in the center
In the experiment of Ref6] there were two traps of one of the polaron and for these parameters it is about 0.25 A,
and three guanines, respectively, separated by a sequencevdiich is much smaller than the lattice constant in DNA
| adenines. We model them by shifting dowp for n=0| (3.4 A). The corresponding change in the transfer integral
+1]+2]+3 by an amountA (the difference between the «(u,.;—u,) is about halfty; in the rest of the polaron it is
ionization potentials ofA and G). For each trap there is a smaller. Although using the linearized depende(i® for-
bound state corresponding to a stationary point of the funcmally introduces some error, we believe, however, that this
tional (19) in our model. Obviously, the energy is lower in error is less significant than the indeterminacy in the param-
the second trapGGG), corresponding to the global energy eters for DNA. The values of the ionization potentials @r
minimum. As explained in the previous section, the boundand A are not known precisely. Several numbers were re-
state in the first traggsingle G) may correspond to a local ported so far for their difference, varying in the range 0.2—
minimum of the functional(19) or it may be an unstable 0.5 eV, this corresponds th~1-2. In Ref.[18] we could
stationary point. In the latter case at least one fluctuatiomeporoduce the experimental results of Ref9] using A
should have negative excitation energy. This is the first thing=1. In the absence of information about the precise value of
we are going to analyze. A we consider it a parameter and analyze the situation for
When the state in the singl® trap is stablga local en-  different values of andA.
ergy minimun), another important question arises. If the  The state in the first trap becomes unstable at sufficiently
shallow state is stable, how high is the energy barrier sepdarge A, when the effect of the trap potential overcomes the
rating the two minima of the energy in the phase space, or iI8T. The stability analysis following the procedure described
other words, what is the minimal energy cost of a fluctuationin the previous section shows that the critical value of the
that can move the system from one stationary state to thpotential isA;,s~2.1 (which corresponds te=0.4 eV for
other? Strictly speaking, we should return to the full phaseour choice ofty), and is almost independent bfThe wave
space considering the energy as a functiogof %, u,, function of the unstable directiofy/,, corresponds to tunnel-
and p,,. However, it is clear that the energetically “cheap- ing: it has a negative peak at the position of the first {i@p
est” path should be quasistatic: the system should notfraction” of the particle is removeyl a positive peak at the
“spend” energy received from the thermal bath on kinetic position of the second trafa “fraction” of the particle is
energy. Next, the highest point of the “cheapest” path mustadded, and it is negligible on the bridge. Only &3 the
necessarily be a saddle point of the full energy functionalgcritical value of A becomesA;,s;~ 1.8, while forl=2 the
and Eq.(18) holds in saddle points. Therefore, it is sufficient first trap state is unstable for andy.

to consider just the energy function@ld) instead of the full The fact that the critical valug;,s; is independent of for
Hamiltonian(15). Thus, our second task will be to find and largel may seem counter-intuitive. Note, however, that even
compare saddle points of the energy functiofi&). for a very large separation, displacing an infinitesimal frac-

Intuitively, for sufficiently large bridge length(such that tion of the polaron from the first to the second trap may be
the two states overlap wealllgne can imagine two possible energetically advantageous if the second trap is deep enough.
trajectories of the relaxation. One corresponds to the holgvhat does depend dris the characteristic time in which the
jumping out of the first trap, traveling across the bridge, andnstability develops and most of the wave function leaks into
falling into the second trap. Obviously, such a pathway willthe deeper trap. This time is determined by the tail of the
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FIG. 1. The energies of the stationary points corresponding to the states in the shallow and the désgidramd open squares,
respectively and of the saddle points corresponding to tunneling and propagation across the(odgeand up triangles, respectively
versus the trap separatibrior g=4, A=0.3(a); andA=1.0 (b).

wave function, and thus grows exponentially wlitin agree-  tunneling saddle point This also explains why we have not
ment with the Marcus-Levich-Jortner relation for the tunnel-found any significant dependence of the critical bridge length
ing rate[7]. on the trap depth. Our results for the critical bridge length
For A<Ajng the shallow trap state is stable, and evenagree reasonably well with the experimental findings of Ref.
tunneling requires some activation energy. It is interesting tg6], where the switching between the two transition mecha-
compare the two trajectories connecting the two stationarpisms was observed bt 3. The smaller experimental value
states(tunneling and propagation across the bridge, as men¢or g=4 our calculations gave=4) suggests that the cou-
tioned abovie We look for saddle points of the functional pling constang should be larger than we assumed. Indeed,
(19) numerically minimizing n(9E/dy,)?, and establish e fing agreement with the experiment fp5.2. This sup-
rborts the idea of a polaron mechanism of charge transport

corresponding to each point. We find that forsmaller than along a DNA chain made of the same b426] versus the

some value\,,, the on-bridge saddle point has lower energy. . :
Forl>4 A tuiO 42 and ig indepengent of At =4 and » hopping mechanisr{i]. .

tun =~ . ) In our model of DNA we have considered hole self trap-
smaller the two saddle points actually merge, the character Ofin due to interaction with vibrations onlv. In princiole
the single saddle point &t 3,4 and of the unstable direction ping - P p'e,

at=1,2 being tunnelinglike, since the corresponding waveOther polarizable degrees of freedom may also contribute to

functions have two maxima at the positions of the traps.th'S effect. As the experiments of R¢6] were performed in

These results are illustrated by Fig. 1, where we plot thé® water solution_of NacCl, a possible candidate is int_eraction
energies of the stationary states in the two traps and th@f the hole with the polar solventwatey and ions
energies of the two saddle points as functionsl é6r A (Na", CI”) present in the solution, leading to additional
=0.3 andA=1.0. fourth-order terms in the energy function@dl9). Our esti-

We see that the typical energy difference between the stahates[21] have shown that they can affect polaron energet-
tionary state in the first trap and the lowest saddle point idcs substantially(increasing the binding energybut at the
SE~0.1, which forty~0.2 eV is of the order of room tem- same time, the shape of the polaron is not strongly changed.
perature. This means that the probability to reach the saddiEhis means that the calculated critical bridge length is not
point should not be suppressed by the thermal exponentig@xpected to change much either and the agreement of our
factor. However, besides the latter, this probability is deterresults with experiment should be preserved.
mined by the statistical weight, or the width of the corre-

sponding valley of the energy surface in the system phase 0.00+

space, and the availability of fluctuations capable of bringing 0.02] I

the system there. Due to complexity of the system, it is dif- 000 e

ficult to say anything quantitative about this, but intuitively it o A

is clear that even when the tunneling saddle point has a lower g % =

energy, it may be hardly reachable if the separatiisriarge. & 008

Thus, comparing the energies of the two saddle points does -0.10

not yield the final conclusion, which one the system would -0.124

actually prefer. Of course, when only the tunneling saddle 014 . . , . . ,
5 10 15 20 25 30

point is available, the system has no choice.

The value ofl at which the two saddle points merge can
be related to the polaron size in a simple way: a polaron can fiG. 2. The energies of the stationary points corresponding to
exist on the bridge as long as the bridge length is larger thanpe states in the shallow and the deep trapper- and lower-solid
or at least comparable to, the characteristic polaron size. Faihes, respectivelyand of the saddle points corresponding to tun-
a short bridge the wave function is concentrated around ongeling and propagation across the bridgetted and dashed lines,
of the traps(for the bound statésor both of them(for the  respectively versus the trap separatibrior g=1 andA=0.15.

trap separation
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087 corresponding to the two states. Two relevant saddle points
0.7 correspondi) to the polaron jumping out of the first trap and
< 0.6 traveling as a whole across the bridge into the second trap,
2 o5 and (ii) to the tunneling between the traps. Comparison of
Z 04] our results from the SSH model for DNA to the experimental
.5_3 0.3] results gives evidence for relevance of the polaron mecha-

B ool nism for charge transport in DNA.
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APPENDIX

Smaller values of the coupling constaptan also be of Here we discuss the details of derivation of E9). The
interest, as they are relevant for conjugated polymers, whergoal is to obtain the expansion of the functiori@l in the
large polarons are the predominant excitatiéinspolymers  Vicinity of the stationary pointjq to the second order. The
with nondegenerate ground stefe2]. Traps may be due to Situation is not straightforward becaugeis subject to the
interaction with the local environment, chain distortion, etc.constraint(7), which defines a hypersphere in the functional
For g=1, representative of many conjugated polymers, the?Pace. The sphere is a curved space, and this curvature
continuum approximation works already quite wéifl the should be taken care of when considering the second-order

; terms of the expansion. It is convenient to consider a hyper-
traps are not very degpand the corresponding energy func- ) .
tional is given by Eq.6), which is the continuum limit of Elane t_angelnt to tlggir?g/s pi:csfhr}?i at;rﬁa%%mggg ggf'?eedre_
Eqg. (19). Looking at the functional6), one may note that y (=o)L o YPErp P

changingg is equivalent to a rescaling of energies andsented asyo+ oy, where 5y spans a linear subspace
lengths. Roughly speakiripecause fog=4 the continuum Syl y. Then ¢ can be used to label points on the sphere

- ation d i K wall t that in the vicinity of ¢, thus serving as local coordinates on the
approximation does not work wgllwe may expect tha sphere. The natural mapping is just the orthogonal projection

passing tog=1 should decrease the characteristic energieg, ihe plane. A poin on the hypersphere whose projection
by a factor of four, and stretch the characteristic lengths by &, the hyperplane ig,+ &, is given by

factor of two. This can be seen in Fig. 2, which is the analog

of Fig. 1 forg=1 and A=0.25. The energies of the two B 1 12
saddle points forl >14 interchange at\,,~0.11; for | Y(x)= =5 | SY(x")*dX" () + (%) (A1)
<14 the points merge. The dependence of the critical value ) i i
Ajns 0N | is plotted in Fig. 3. to the second order idys. Generally, the energy functional in
ns the vicinity of ¢, can be approximated to the second order in
y— o as
IV. CONCLUSIONS
SE

In conclusion, we have considered a polaron on a polymer E[4]~E[ o]+ f ———[ (X)) — p(x) ]dx

: > : Oh(x)
chain containing two different traps. In the presence of a
relaxation mechanism the polaron, initially localized near the 1 52
shallower trap, may fall into the deeper trap. On the other + Ef —/[zp(x)— Po(X)]
hand, the state in the shallower trap may be stabilized by ST. OY(X) S(X")

The conditions of stability of the shallow-trap state were ana- " ,

lyzed in the present paper. X[P(X") = ho(x") ]Jdx dX'. (A2)
When the shallow state is stable, it may be viewed as\Now, restricting ourselves to points on the hypersphere, ex-

separated by a barrier in the system configuration space fropressingy in terms of 8y from Eq. (A1), and using the fact

the deep state. The energy necessary for the system to relthat SE/ Syy=2€1y [EQ. (8)], we arrive at Eq(9). As 5y

into the deep statéo be supplied by thermal fluctuationss  lies in a linear space, the expressi@ can be treated as a

determined by the lowest saddle point on the energy surfacguadratic form and the linear eigenvalue problem can be

in the configuration space connecting the two energy minimgosed.
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