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Self-trapping versus trapping: Application to hole transport in DNA

D. M. Basko* and E. M. Conwell
Department of Chemistry, University of Rochester, Rochester, New York 14627

~Received 18 January 2002; published 11 June 2002!

We address the problem of interplay between self-trapping effects and effects of an external potential, which
may be relevant for many physical systems, such as polarons in solids or a Bose-Einstein condensate with
attraction. If the potential consists of two different wells, the system initially localized in the shallower well
may relax into the deeper well, or may not if stabilized by the self-trapping effect. We show how this picture
can be applied to interpret results of recent experiments on electron transfer in the DNA molecule@Gieseet al.,
Nature412, 318 ~2001!#. The results of our calculations agree well with the experimental findings, giving
evidence that hole transport in DNA involves polaronic effects.

DOI: 10.1103/PhysRevE.65.061902 PACS number~s!: 87.14.Gg, 71.38.2k, 72.80.Le
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I. INTRODUCTION

The phenomenon of self trapping~ST! is well known in
many fields of physics. It is often mentioned when one de
with charge carriers or excitons in solids, which interact w
the crystal lattice. Bose-Einstein condensate~BEC! with at-
traction between constituting particles may also be con
ered a system with ST.

One of the aspects of this phenomenon is the interp
between the effect of interactions responsible for ST, and
effect of an external potential applied to the system~confine-
ment, external field, or impurity potential!. One example of
this is polaron formation in the presence of an impurity. D
pending on the dimensionality of the system, its paramet
and the type of the impurity, the electronic state may shr
into a small polaron, or form a finite-radius polaron@1#. An-
other example is BEC with attraction in a magnetic tra
where the confining potential may prevent the cloud fro
collapsing@2#.

A specific motivation for studying this problem is expe
ments on charge transport along a DNA molecule. Each
the two DNA strands may be viewed as a chain, each sit
which is one of the four bases: guanine (G), adenine (A),
cytosine (C), and thymine (T), having different ionization
potentials. Thus, if one removes an electron from the ch
the resulting hole feels the on-site potentialsVG,VA,VC
,VT . The overlap of electronicp orbitals of the neighbor-
ing bases tends to delocalize the carrier along the chain@3,4#.
The dependence of this overlap on the interbase dista
couples the hole motion to the lattice displacements, wh
in one-dimensional systems leads to the carrier ST@5#. Thus,
one may hope to describe a charge on the DNA chain an
gously to polarons in conducting polymers@4#.

There is a large body of work in which transport of hol
in DNA has been studied by monitoring their progress
tween different traps on the chain~ @6# and references
therein!. A single guanine on a chain consisting only of a
enines acts as a trap sinceVG,VA ; two adjacent guanine
represent then a different trap with a deeper level, etc. It
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found that when two traps are connected by a long brid
sequence ofA’s, after a hole tunnels through the first 3A’s it
moves through many laterA’s with essentially no further
attenuation@6#. Several mechanisms have been proposed
hole transport through the bridge: incoherent hopping@7#,
fluctuation-induced hopping@8#, and bandlike transport@9#.
In the present paper, we show how the experimental res
of Ref. @6# can be interpreted in the polaron model of Re
@4#.

This brings us into the general framework discussed in
beginning: if the polaron picture is relevant for DNA, ho
transfer is a result of the competition between the effect
the trapping potential of guanines and the self-trapping ef
due to the interaction with lattice. The former provides t
driving force for the hole transfer from a singleG trap to the
deeperGGG trap, while the latter tends to keep the carri
where it is, i.e. on the singleG. In this context one may ask
several questions. When will the hole relax from a shallow
trap ~G! to a deeper trap (GG or GGG), and when will the
shallower-trap state be stabilized by ST? What is the cha
teristic energy of this stabilization?

The same questions may be relevant for a completely
ferent physical system, such as BEC in a double-well tr
ping potential. This system was studied in the context
phase coherence effects between the two condensates@10#,
but we are not aware of any work analyzing the stability
stationary states in different wells in the presence of an
ergy relaxation mechanism.

The arguments we give below are of quite general ch
acter, as long as systems whose stationary states are
scribed by the stationary nonlinear Schro¨dinger equation
with external potential, or a similar one, are considered. I
portant is that we will always remain at the level of classic
field equations, neglecting the quantum nature of the cry
lattice vibrations~which is justified if the phonon frequenc
is small! or quantum corrections to the Gross-Pitaevski eq
tion for the condensate wave function.

Focusing on stationary states, we do not address kin
problems, like dc conductivity in DNA. Kinetics is strongl
dependent on fluctuations and dissipation present in the
tem. For polymers and especially for DNA these proces
are complex and different for different experimental con
©2002 The American Physical Society02-1
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tions. One of the goals of the present paper is to get so
insight into the behavior of the system regardless of the s
cific nature of fluctuations and dissipation.

II. GENERAL PICTURE

The phenomenon of self-trapping may occur when
charge carrier~an excess electron in the conduction band o
hole in the valence band! interacts with a deformable me
dium ~crystal lattice!. The charge polarizes the mediu
whose deformation, in turn, results in an effective poten
acting on the charge, the total energy of the system be
lower than for a free~delocalized! state; the carrier ‘‘digs’’ a
well for itself. The interaction can often be formally de
scribed by an effective potentialv(r ) acting on the carrier.
This potential is produced by the deformable medium an
depends on the medium~lattice! degrees of freedom.

For simplicity we assume to be in one dimension. Co
sidering states with only one carrier, we describe the car
by the wave functionc(x,t). Assuming the lattice to be
heavy, we treat the corresponding degrees of freedom cla
cally. This leads to the Schro¨dinger equation for the particle
wave function

i\
]c

]t
5F2

\2

2m

]2

]x2
1V~x!1v~x,t !Gc. ~1!

Here, m is the carrier~effective! mass,V(x) is an external
potential acting on the carrier~e.g., due to traps, impurities
external electric field, etc.!, andv(x,t) is the effective poten-
tial due to the lattice. To determine the dynamics of t
coupled system, in addition to Eq.~1! one should supply the
equations of motion for the lattice degrees of freedom, wh
determine the behavior of the potentialv(x,t). The argu-
ments we give below are quite general, but in order to m
the algebra as simple and illustrative as possible we cons
equations for acoustic phonons with the sound velocityc @11#

1

c2

]2u

]t2
5

]2u

]x2
1g

]

]x
ucu2, ~2!

whereu(x,t) is the field of the lattice displacements,g is the
electron-phonon coupling constant, and the lattice poten
is related to the displacements byv(x)5g]u/]x ~deforma-
tion potential!. The Lagrangian corresponding to these eq
tions is given by

L5E F i\

2
~c* ċ2ċ* c!2V~x!c* c2gc* c

]u

]x
1

u̇2

2c2

2
1

2 S ]u

]xD 2Gdx. ~3!

Consider stationary solutions of Eqs.~1! and ~2!

c~x,t !5c~x!e2 i (e/\)t, u~x,t !5u~x!,

wheree is the electronic energy andc(x) may be considered
real without loss of generality. Using the equation of moti
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for the lattice degrees of freedom, one can eliminate the
ter. Namely, from Eq.~2! we obtain that in a stationary stat
the displacementu(x) can be expressed in terms of the ho
wave function as

]u

]x
52guc~x!u2. ~4!

The total energy of the stationary state can be formally
tained from the Lagrangian~3! and can be expressed in term
of c(x)

E@c#5E F \2

2m S ]c

]x D 2

1V~x!c22g2c4Gdx, ~5!

where the last term represents the additional energy of
system due to the interaction of the carrier with the mediu
Minimizing E@c# with respect toc(x) one obtains the equa
tion for the wave function of the stationary polaron.

The energy functional~5! coincides also with that for
BEC with attraction. Choosing the appropriate units for t
energy, we write it in a generic form

E@c#5E F S ]c

]x D 2

1V~x!c22
g

2
c4Gdx, ~6!

where all the quantities are dimensionless andg is the non-
linear coupling constant. For BEC, one usually normaliz
the wave function to the total number of particles, here
prefer to keep the normalization to unity

E c2~x!dx51, ~7!

relevant for polarons. Changing the normalization ofc cor-
responds to simple rescaling ofg.

Suppose that the potentialV(x) consists of two different
potential wells, and for each well there is a stationary st
with the wave function localized around the well. The deep
of these two states represents the ground state of the sys
the shallower one is an excited state. It is convenient to
terpret this picture geometrically, viewing each wave fun
tion c(x) as a point in the functional space. Then the grou
state of the system is the global minimum of the function
E@c# in this space, while the excited state may be eithe
local minimum or an unstable stationary point. If the dyna
ics of the system is governed only by the equations of mot
considered above, the system can remain in the excited
forever. However, if one includes fluctuations and dissip
tion, the character of the excited state becomes very im
tant. For a local minimum small perturbations will not driv
the system out of the vicinity of the stationary point~i.e., the
particle stays in the shallow well!, while in the case of an
unstable point dissipation may make the system fall into
global minimum~i.e., the particle moves to the deep well!.

Thus, the first question we ask ourselves is whethe
stationary pointc0(x) of the functional~6! is stable or not.
The wave function satisfies the stationary nonlinear Sch¨-
dinger equation
2-2
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1

2

dE

dc
5F2

]2

]x2
1V2gc0

2Gc05e0c0 . ~8!

The Lagrange multipliere0 takes care of the constraint~7!
and corresponds to the electronic energy for polarons and
single-particle energy~chemical potential! for BEC. Around
the stationary point the energy functional~6! may be ex-
panded to the second order as

E@c#'E@c0#1E F1

2

d2E

dc~x!dc~x8!
2e0G

3dc~x!dc~x8!dx dx8, ~9!

where the derivative is taken at the pointc0, and the varia-
tion dc is orthogonal toc0 ~see the Appendix for details!.
When dealing with the quadratic form~9! dc can be treated
as a vector in the linear space orthogonal toc0. If for some
direction udc&'uc0& the quadratic form is negative, the st
tionary point is unstable@12#. The vector minimizing the
quadratic form~the ‘‘worst’’ fluctuation! must be an eigen
vector of the corresponding matrix

Hudc&5deudc&1luc0&, ~10!

whereH is the linear operator whose kernel is given by t
square bracket in Eq.~9!

Hx5@2¹21V~x!23gc0
2~x!2e0#, ~11!

de is the corresponding eigenvalue, andluc0& is an arbitrary
vector parallel touc0&, which is cancelled when Eq.~10! is
projected on the subspace orthogonal touc0&. From Eq.~10!
the condition for the eigenvaluesde follows:

^c0u~H2de!21uc0&50. ~12!

If the smallest eigenvaluedemin,0, then the stationary poin
is unstable. The corresponding eigenvector determines
direction of the ‘‘worst’’ fluctuation

udc&5~H2demin!
21uc0&. ~13!

Applied to the case of the two traps, this criterion mea
that the state in the shallower well may be stabilized, if
ST potential23gc0

2 manages to ‘‘deepen’’ the shallow we
sufficiently. Note that conceptually the same picture d
scribes the stabilization of a finite-radius polaron in a thr
dimensional~3D! solid by an impurity potential@1#, which
prevents it from shrinking into a small polaron, or the sta
lization of BEC with attraction by the trap potential@2#,
which would collapse in free space. In the latter case,
excitationdc with the energydemin approaching zero at th
onset of the collapse, is the breathing mode@13#. Note also
that for the translationally invariant caseV(x)50 one can
differentiate Eq.~8! with respect tox to see that the function

dc}
]c0

]x
'c0
06190
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satisfies Eq.~10! with zero eigenvaluede50 ~an analog of
neutral equilibrium in mechanics!. This solution corresponds
to spatial translation of the polaron@14#, which apparently
costs no energy.

III. APPLICATION TO DNA

Now we apply the above considerations to a polym
chain with one excess hole~for DNA we assume that the
hole is confined to one strand!. The electronic wave func-
tions on adjacent bases overlap, which leads to nonzero
ues of the hole transfer integralstn11,n between the sitesn
11 and n ~the off-diagonal elements of the hole Ham
tonian!. This overlap is affected by various motions of th
bases. The vibrational degrees of freedom that couple
ciently to the transfer integral are the relative base pair d
placements along the stackun112un ~lattice strain! and the
relative twist anglesun112un @15#. However, the base dis
placementsun and the twist anglesun are not independent o
each other, since rigidity of the sugar-phosphate backb
imposes a constraint that relates them@16#. Hence, we con-
sider only the dependencetn11,n(un112un) which has the
sense of an effective coupling. Assuming that the displa
ments are small, we approximate this dependence by a li
one,

tn11,n~un112un!5t02a~un112un!, ~14!

wheret0 is the transfer integral for zero displacements anda
is the effective coupling constant. The calculation is simp
fied by assumingt0 anda to be the same for all neighborin
bases. The assumptions made above lead us to the
Schrieffer-Heeger~SSH! Hamiltonian @17# for an undimer-
ized chain

H5(
n

Vncn* cn2(
n

@ t02a~un112un!#~cn* cn11

1cn11* cn!1(
n

F pn
2

2M
1

K

2
~un112un!2G , ~15!

wherecn is the hole wave function,Vn is the on-site trap-
ping potential~determined by the ionization potential of th
nth base!, pn is the momentum conjugate to the displacem
un , andM andK are the mass and the elastic constant as
ciated with the vibrations considered. Application of th
Hamiltonian to DNA was discussed in detail in Ref.@4#.

This Hamiltonian yields the following equations of mo
tion for the hole wave functioncn(t) and the lattice dis-
placementsun(t):

i\ċn5Vncn2@ t02a~un112un!#cn11

2@ t02a~un2un21!#cn21 , ~16!

Mün5K~un1122un1un21!

1a@2cn11* cn1cn* cn211c. c.#, ~17!

where ‘‘c. c.’’ stands for the complex conjugate.
2-3
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Considering stationary solutions

cn~ t !5cne2 i (e/\)t, un~ t !5un ,

we eliminate the strain using Eq.~17!,

un112un5
2a

K
cn11cn , ~18!

which is an analog of Eq.~4!. Substitutingun into the Hamil-
tonian ~15!, instead of the functional~6! we obtain the en-
ergy functional for DNA

E@cn#521(
n

FVncn
222cncn112

g

2
cn

2cn11
2 G . ~19!

Here, energy is measured in units of the transfer integrat0,
while the dimensionless coupling constantg is expressed in
terms of the electron-lattice coupling constanta and the lat-
tice elastic constantK asg54a2/(Kt0). The constant two is
added to choose the zero energy to be the extremum o
free valence band in an undistorted chain withVn50, be-
cause we are dealing with holes.

In the experiment of Ref.@6# there were two traps of on
and three guanines, respectively, separated by a sequen
l adenines. We model them by shifting downVn for n50,l
11,l 12,l 13 by an amountD ~the difference between th
ionization potentials ofA and G). For each trap there is
bound state corresponding to a stationary point of the fu
tional ~19! in our model. Obviously, the energy is lower
the second trap (GGG), corresponding to the global energ
minimum. As explained in the previous section, the bou
state in the first trap~single G) may correspond to a loca
minimum of the functional~19! or it may be an unstable
stationary point. In the latter case at least one fluctua
should have negative excitation energy. This is the first th
we are going to analyze.

When the state in the singleG trap is stable~a local en-
ergy minimum!, another important question arises. If th
shallow state is stable, how high is the energy barrier se
rating the two minima of the energy in the phase space, o
other words, what is the minimal energy cost of a fluctuat
that can move the system from one stationary state to
other? Strictly speaking, we should return to the full pha
space considering the energy as a function ofcn , cn* , un ,
and pn . However, it is clear that the energetically ‘‘chea
est’’ path should be quasistatic: the system should
‘‘spend’’ energy received from the thermal bath on kine
energy. Next, the highest point of the ‘‘cheapest’’ path m
necessarily be a saddle point of the full energy function
and Eq.~18! holds in saddle points. Therefore, it is sufficie
to consider just the energy functional~19! instead of the full
Hamiltonian~15!. Thus, our second task will be to find an
compare saddle points of the energy functional~19!.

Intuitively, for sufficiently large bridge lengthl ~such that
the two states overlap weakly! one can imagine two possibl
trajectories of the relaxation. One corresponds to the h
jumping out of the first trap, traveling across the bridge, a
falling into the second trap. Obviously, such a pathway w
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always ‘‘cost’’ some energy;D, thus we do not expect it to
cause instability. Still, in the stable situation, the highe
point of this trajectory may be the lowest saddle point. A
other possible pathway is to tunnel to the second t
through the exponential tail of the wave function, when fi
a small ‘‘fraction’’ of the hole appears in the second tra
then it grows with time until all of the wave function leak
into the second trap, the value of the wave function on
bridge being always small.

The values of microscopic parameters for charge carr
in DNA have not been agreed upon by the community y
We use the valuest0'0.2 eV, a'0.4 eV/Å, and K
'0.85 eV/Å2, which allowed us to reproduce the expe
mental results of Ref.@18# for the differences in energies o
the hole stationary states in different traps@19#. These values
correspond to a coupling constantg in Eq. ~19! of about four.
For g54, the energy of the static self-localized polaron st
on a chain without traps~or on a very long bridge! is e5
20.60 ~purely electronic energy!, E520.23 ~total energy!,
measured in units oft0. The length determining the exponen
tial tail of the wave function is of the order of the lattic
constant~the polaron wave function extends over a few la
tice sites!, so discreteness of the model is essential for t
value ofg. The largest lattice strainun112un is in the center
of the polaron and for these parameters it is about 0.25
which is much smaller than the lattice constant in DN
(3.4 Å). The corresponding change in the transfer integ
a(un112un) is about halft0; in the rest of the polaron it is
smaller. Although using the linearized dependence~14! for-
mally introduces some error, we believe, however, that t
error is less significant than the indeterminacy in the para
eters for DNA. The values of the ionization potentials forG
and A are not known precisely. Several numbers were
ported so far for their difference, varying in the range 0.
0.5 eV; this corresponds toD;1 –2. In Ref.@18# we could
reporoduce the experimental results of Ref.@19# using D
'1. In the absence of information about the precise value
D we consider it a parameter and analyze the situation
different values ofl andD.

The state in the first trap becomes unstable at sufficie
largeD, when the effect of the trap potential overcomes t
ST. The stability analysis following the procedure describ
in the previous section shows that the critical value of
potential isD inst'2.1 ~which corresponds to'0.4 eV for
our choice oft0), and is almost independent ofl. The wave
function of the unstable directiondcn corresponds to tunnel
ing: it has a negative peak at the position of the first trap~a
‘‘fraction’’ of the particle is removed!, a positive peak at the
position of the second trap~a ‘‘fraction’’ of the particle is
added!, and it is negligible on the bridge. Only atl 53 the
critical value ofD becomesD inst'1.8, while for l 52 the
first trap state is unstable for anyD.

The fact that the critical valueD inst is independent ofl for
large l may seem counter-intuitive. Note, however, that ev
for a very large separation, displacing an infinitesimal fra
tion of the polaron from the first to the second trap may
energetically advantageous if the second trap is deep eno
What does depend onl is the characteristic time in which th
instability develops and most of the wave function leaks in
the deeper trap. This time is determined by the tail of
2-4
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FIG. 1. The energies of the stationary points corresponding to the states in the shallow and the deep trap~solid and open squares
respectively! and of the saddle points corresponding to tunneling and propagation across the bridge~down and up triangles, respectively!
versus the trap separationl for g54, D50.3 ~a!; andD51.0 ~b!.
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wave function, and thus grows exponentially withl, in agree-
ment with the Marcus-Levich-Jortner relation for the tunn
ing rate@7#.

For D,D inst the shallow trap state is stable, and ev
tunneling requires some activation energy. It is interesting
compare the two trajectories connecting the two station
states~tunneling and propagation across the bridge, as m
tioned above!. We look for saddle points of the functiona
~19! numerically minimizing (n(]E/]cn)2, and establish
their character looking at the shape of the wave funct
corresponding to each point. We find that forD smaller than
some valueD tun the on-bridge saddle point has lower energ
For l .4 D tun'0.42 and is independent ofl. At l 54 and
smaller the two saddle points actually merge, the characte
the single saddle point atl 53,4 and of the unstable directio
at l 51,2 being tunnelinglike, since the corresponding wa
functions have two maxima at the positions of the tra
These results are illustrated by Fig. 1, where we plot
energies of the stationary states in the two traps and
energies of the two saddle points as functions ofl for D
50.3 andD51.0.

We see that the typical energy difference between the
tionary state in the first trap and the lowest saddle poin
dE;0.1, which fort0'0.2 eV is of the order of room tem
perature. This means that the probability to reach the sa
point should not be suppressed by the thermal expone
factor. However, besides the latter, this probability is de
mined by the statistical weight, or the width of the corr
sponding valley of the energy surface in the system ph
space, and the availability of fluctuations capable of bring
the system there. Due to complexity of the system, it is d
ficult to say anything quantitative about this, but intuitively
is clear that even when the tunneling saddle point has a lo
energy, it may be hardly reachable if the separationl is large.
Thus, comparing the energies of the two saddle points d
not yield the final conclusion, which one the system wou
actually prefer. Of course, when only the tunneling sad
point is available, the system has no choice.

The value ofl at which the two saddle points merge c
be related to the polaron size in a simple way: a polaron
exist on the bridge as long as the bridge length is larger th
or at least comparable to, the characteristic polaron size.
a short bridge the wave function is concentrated around
of the traps~for the bound states! or both of them~for the
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tunneling saddle point!. This also explains why we have no
found any significant dependence of the critical bridge len
on the trap depth. Our results for the critical bridge leng
agree reasonably well with the experimental findings of R
@6#, where the switching between the two transition mec
nisms was observed atl 53. The smaller experimental valu
~for g54 our calculations gavel 54) suggests that the cou
pling constantg should be larger than we assumed. Inde
we find agreement with the experiment forg'5.2. This sup-
ports the idea of a polaron mechanism of charge trans
along a DNA chain made of the same base@20# versus the
hopping mechanism@7#.

In our model of DNA we have considered hole self tra
ping due to interaction with vibrations only. In principle
other polarizable degrees of freedom may also contribut
this effect. As the experiments of Ref.@6# were performed in
a water solution of NaCl, a possible candidate is interact
of the hole with the polar solvent~water! and ions
(Na1, Cl2) present in the solution, leading to addition
fourth-order terms in the energy functional~19!. Our esti-
mates@21# have shown that they can affect polaron energ
ics substantially~increasing the binding energy!, but at the
same time, the shape of the polaron is not strongly chan
This means that the calculated critical bridge length is
expected to change much either and the agreement of
results with experiment should be preserved.

FIG. 2. The energies of the stationary points corresponding
the states in the shallow and the deep trap~upper- and lower-solid
lines, respectively! and of the saddle points corresponding to tu
neling and propagation across the bridge~dotted and dashed lines
respectively! versus the trap separationl for g51 andD50.15.
2-5
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Smaller values of the coupling constantg can also be of
interest, as they are relevant for conjugated polymers, wh
large polarons are the predominant excitations~in polymers
with nondegenerate ground state! @22#. Traps may be due to
interaction with the local environment, chain distortion, e
For g51, representative of many conjugated polymers,
continuum approximation works already quite well~if the
traps are not very deep!, and the corresponding energy fun
tional is given by Eq.~6!, which is the continuum limit of
Eq. ~19!. Looking at the functional~6!, one may note tha
changing g is equivalent to a rescaling of energies a
lengths. Roughly speaking~because forg54 the continuum
approximation does not work well!, we may expect tha
passing tog51 should decrease the characteristic energ
by a factor of four, and stretch the characteristic lengths b
factor of two. This can be seen in Fig. 2, which is the ana
of Fig. 1 for g51 and D50.25. The energies of the tw
saddle points forl .14 interchange atD tun'0.11; for l
<14 the points merge. The dependence of the critical va
D inst on l is plotted in Fig. 3.

IV. CONCLUSIONS

In conclusion, we have considered a polaron on a polym
chain containing two different traps. In the presence o
relaxation mechanism the polaron, initially localized near
shallower trap, may fall into the deeper trap. On the ot
hand, the state in the shallower trap may be stabilized by
The conditions of stability of the shallow-trap state were a
lyzed in the present paper.

When the shallow state is stable, it may be viewed
separated by a barrier in the system configuration space
the deep state. The energy necessary for the system to
into the deep state~to be supplied by thermal fluctuations!, is
determined by the lowest saddle point on the energy sur
in the configuration space connecting the two energy min

FIG. 3. The critical trap depth at which the stationary state in
smaller trap becomes unstable as a function of the trap separal
for g51.
s

06190
re

.
e

s
a
g

e

er
a
e
r
T.
-

s
m
lax

ce
a

corresponding to the two states. Two relevant saddle po
correspond~i! to the polaron jumping out of the first trap an
traveling as a whole across the bridge into the second t
and ~ii ! to the tunneling between the traps. Comparison
our results from the SSH model for DNA to the experimen
results gives evidence for relevance of the polaron mec
nism for charge transport in DNA.
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APPENDIX

Here we discuss the details of derivation of Eq.~9!. The
goal is to obtain the expansion of the functional~6! in the
vicinity of the stationary pointc0 to the second order. The
situation is not straightforward becausec is subject to the
constraint~7!, which defines a hypersphere in the function
space. The sphere is a curved space, and this curva
should be taken care of when considering the second-o
terms of the expansion. It is convenient to consider a hyp
plane tangent to the hypersphere at the pointc0 and defined
by (c2c0)'c0. Points of this hyperplane can be repr
sented asc01dc, where dc spans a linear subspac
dc'c0. Thendc can be used to label points on the sphe
in the vicinity of c0, thus serving as local coordinates on t
sphere. The natural mapping is just the orthogonal projec
on the plane. A pointc on the hypersphere whose projectio
on the hyperplane isc01dc, is given by

c~x!5F12
1

2E udc~x8!u2dx8Gc0~x!1dc~x! ~A1!

to the second order indc. Generally, the energy functional i
the vicinity of c0 can be approximated to the second order
c2c0 as

E@c#'E@c0#1E dE

dc~x!
@c~x!2c0~x!#dx

1
1

2E d2E

dc~x!dc~x8!
@c~x!2c0~x!#

3@c~x8!2c0~x8!#dx dx8. ~A2!

Now, restricting ourselves to points on the hypersphere,
pressingc in terms ofdc from Eq. ~A1!, and using the fact
that dE/dc52e0c0 @Eq. ~8!#, we arrive at Eq.~9!. As dc
lies in a linear space, the expression~9! can be treated as
quadratic form and the linear eigenvalue problem can
posed.
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